Plane & Pilot
Tuesday, May 25, 2010

Evolution Of An Original

The Lycoming-powered Evolution turns in turboprop performance on a piston budget

Power To The Pilot
Power for the avgas Evolution is provided by a modified version of the 540-cubic-inch Lycoming. The engine is an electronically controlled version of the same mill used in the Piper Mirage. Technically, its designation is TEO-540-AE2A, and it’s the first of Lycoming’s new computer- controlled iE2 engines. iE stands for integrated electronics, and the system relieves the pilot of practically all engine management responsibilities. Despite the powerplant’s size and complexity, operation is as simple as “push forward to go, pull back to stop.” The pilot need only decide how fast to fly and how much fuel to burn. The computer automatically monitors the EGT and CHT of each cylinder and adjusts mixture to optimize performance.

The airplane I flew was the prototype, so it wasn’t in final configuration. It featured a prop control (that we never touched), but the production version will utilize a single-lever power control.

The engine will be rated for a max 400 hp for climb and 350 hp continuous. Tom Bowen says he expects Lycoming to certify the engine for five minutes at the 400 hp rating before reducing to METO power. Though the TEO-540 is fully electronically controlled, it’s not referred to as FADEC, as it does incorporate a mechanical throttle linkage. The Lycoming even includes an automatic run-up feature that checks all systems and advises the pilot if everything is within tolerances. Lycoming should have completed its final certification tests by the time you read this, and the finished Evolution should be available for purchase as a homebuilt about Oshkosh time.

A Study In Performance
Flying the Evolution is a different experience than aviating in the Lancair IVP. I’ve flown the IVP a half-dozen times, and I analogize it to flying a WWII fighter with three good friends along for the ride. The numbers are spectacular, handling is generally good and the airplane is reasonably comfortable, but I understand why some pilots regard its flight characteristics as a little too aggressive. Though the stall is only three knots above the FAA’s certified limit, stall characteristics are more abrupt, and recovery demands more altitude. If you’re looking for ultimate performance, the Lancair IVP is a great choice. If you’re seeking a more benign personality with still impressive climb and cruise numbers, Lancair hopes you’ll choose the Evolution.

Despite the massive injection of horsepower, the big Lycoming doesn’t exactly foam at the mouth. Still, there’s little question you’re going someplace when you put the big knob against the panel. You can plan on an easy 2,000 fpm initial climb under gross conditions, perhaps 2,500 fpm at light weights. Combine strong climb with the airplane’s stout pressurization system, and there’s little reason not to fly virtually any trip in the mid to high teens, where you’ll see an easy 220 to 230 KTAS. Ascend to the medium flight levels—the Evolution is approved for flight at FL280, the maximum non-RVSM height—and you should see the magic 270 knots. With a stall at only 61 knots, this means the Evolution enjoys a flight-envelope speed ratio of 4.4 to one.

Tom Bowen flew the prototype down from Oregon to the Sun ’n Fun show in Lakeland, Fla., at 25,000 feet, and he saw a consistent 250 knots on 23 gph. Most weather tops at 15,000 feet or below, so you can plan on cruising in smooth air and sunshine 90% of the time, even if you only opt for the highest non-IFR altitude, 17,500 feet.

My first takeoff in the Evolution was a formation departure out of Plant City, Fla., on the wing of a 172, and it wasn’t a problem. The lead pilot kept the Skyhawk low after liftoff, and the Evolution maintained an easy 20- to 30-foot separation as we climbed out for Jim Lawrence’s camera. With one door off, the Skyhawk probably couldn’t manage more than 100 knots, but the Evolution didn’t seem to mind in the least.

Stalls in the newest Lancair are pretty much an anticlimax. The break is straight ahead, with little tendency to drop a wing. I tried stalls in a variety of configurations, and the airplane refused to do anything unusual.

Such gentle manners in down and dirty trim suggest good landing characteristics, and the Evolution doesn’t appear to have any bad habits. Stall speed is a docile 61 knots. Using 85 knots around the pattern and as little as 75 knots across the fence (roughly the same numbers you’d use in the old Columbias), the Evolution can easily handle 2,000-foot strips. Judging the flare is simple, and the Evolution’s trailing-beam landing gear eases the actual touchdown.

So far, only about a dozen Lancair Evolutions have been built, and those have all been turbine models. It may not be long before piston Evolutions begin construction at the company’s Oregon plant.

Make no mistake, these aren’t your typical homebuilts, but you can be guaranteed they’ll fly higher and faster than pretty much anything else in the piston world. Mike Miller would be proud.

Labels: Piston SinglesSpecs


Add Comment